Transcriptional remodeling of ion channel subunits by flow adaptation in human coronary artery endothelial cells.
نویسندگان
چکیده
Endothelial cells (ECs) are constantly exposed to blood flow-induced shear forces in the vessels and this is a major determinant of endothelial function. Ion channels have a major role in endothelial function and in the control of vascular tone. We hypothesized that shear force is a general regulator of ion channel expression, which will have profound effects on endothelial function. We examined this hypothesis using large-scale quantitative real-time RT-PCR. Human coronary artery ECs were exposed to two levels of flow-induced shear stress for 24 h, while control cells were grown under static conditions. The expression of ion channel subunits was compared between control and flow-adapted cells. We used primers against 55 ion channel and exchanger subunits and were able to detect 54 subunits. Five dyn/cm(2) of shear induced downregulation of 1 (NCX1) and upregulation of 18 subunits, including K(Ca)2.2, K(Ca)2.3, CX37, K(v)1.5 and HCN2. Fifteen dyn/cm(2) of shear stress induced the expression of 30 ion channel subunits, including K(Ca)2.3, K(Ca)2.2, CX37, K(ir)2.3 and K(Ca)3.1. Our data demonstrate that substantial remodeling of endothelial ion channel subunit expression occurs with flow adaptation and suggest that altered ion channel expression may significantly contribute to vascular pathology associated with flow-induced alterations.
منابع مشابه
Transcriptional Remodeling of Ion Channel Subunits by Flow Adaptation in Human Coronary Artery Endothelial Cells
Endothelial cells (ECs) are constantly exposed to blood flowinduced shear forces in the vessels and this is a major determinant of endothelial function. Ion channels have a major role in endothelial function and in the control of vascular tone. We hypothesized that shear force is a general regulator of ion channel expression, which will have profound effects on endothelial function. We examined...
متن کاملReceptor for advanced glycation end products involved in circulating endothelial cells release from human coronary endothelial cells induced by C-reactive protein
Objective(s): This study was designed to investigate the effect of receptor for advanced glycation end products (RAGE), S100A12 and C-reactive protein (CRP) on the release of circulating endothelial cells (CECs) from human coronary artery endothelial cells (HCAECs). Materials and Methods: HCAECs were cultured in increasing concentration of CRP (0, 12.5, 25, 50μg/ml) or S100A12 protein (0, 4, 1...
متن کاملMetalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of vascular research
دوره 48 4 شماره
صفحات -
تاریخ انتشار 2011